Conservez seulement de quoi écrire et une calculatrice : pas de téléphone en particulier! Si vous ne comprenez pas une notation, une question, ou si vous pensez avoir découvert une erreur d'énoncé, signalez-le immédiatement.

Exercice 1 : Modèle de guidage de rayons lumineux

On considère la structure présentée sur la figure 1 ci-dessous, constituée de trois milieux transparents plans \mathcal{M}_1 , \mathcal{M}_2 et \mathcal{M}_3 , d'épaisseurs respectives e_1 , e_2 et $e_3 = e_1$, d'indices absolus de réfraction n_1 , n_2 et $n_3 = n_1$, les milieux \mathcal{M}_1 1 et \mathcal{M}_3 étant identiques.

Cette structure est plongée dans un milieu \mathcal{M}_0 d'indice absolu n_0 . Un rayon 0 est incident en un point I sur le premier dioptre (A'A) sous un angle i par rapport à la normale au dioptre AA' en I. À la sortie de la structure, le rayon est intercepté sur un écran (E) placé à la distance h du dioptre (D'D). Les positions sur l'écran sont repérées sur un axe x'x dont l'origine 0 est la projection, perpendiculairement aux dioptres, du point d'incidence I.

Pour les calculs, on prendra les valeurs numériques suivantes :

Données :

angle $i = 30^{\circ}$;

indices $n_0 = 1$; $n_1 = 1,33$; $n_2 = 1,50$;

distances $e_1 = 5.0 \,\mathrm{mm}$; $e_2 = 10.0 \,\mathrm{mm}$; $h = 5.00 \,\mathrm{cm}$; $D = 20.0 \,\mathrm{cm}$;

constantes vitesse de la lumière dans le vide $c = 3,00 \cdot 10^8 \,\mathrm{m \cdot s^{-1}}$.

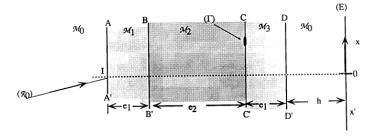


Fig. 1

- **1**. (a) Exprimer l'angle de réfraction r_1 du rayon dans le milieu \mathcal{M}_1 en fonction de i et de n_1 et n_0 . Calculer numériquement r_1 .
 - (**b**) Exprimer l'angle de réfraction r_2 du rayon dans le milieu \mathcal{M}_2 en fonction de n_1 , n_2 et r_1 . Calculer numériquement r_2 .
- (a) Tracer schématiquement l'allure du reste du trajet du rayon jusqu'à l'écran (E). Exprimer la durée totale, notée τ, de son trajet depuis le point I jusqu'à l'écran (E) et calculer sa valeur.
 - (**b**) On considère dans cette question seulement que les indices n_1 et n_2 sont égaux à n_0 . Exprimer la durée, notée τ_0 , du trajet suivi par le même rayon \mathcal{R}_0 pour aller du point I à l'écran (E).

- (**c**) Exprimer la différence $\Delta \tau = \tau \tau_0$ et calculer sa valeur.
- **3.** Les trois milieux \mathcal{M}_1 , \mathcal{M}_2 et \mathcal{M}_3 définis précédemment, sont maintenant disposés comme indiqué sur la figure 2 ci-dessous. On définit un repère orthogonal Ox, Oy, Oz tel que :
 - l'axe Oz est perpendiculaire aux surfaces séparant les milieux,
 - le plan xOy est parallèle à ces surfaces et coupe \mathcal{M}_2 à égale distance de \mathcal{M}_1 et \mathcal{M}_3 . Les indices des différents milieux sont tels que $n_2 > n_1 = n_3 > n_0$ (leurs valeurs sont les mêmes que précédemment). La structure a une longueur notée D suivant Ox (sa valeur est donnée avec les autres au début de l'énoncé).

Un rayon lumineux \mathcal{R}_0 est incident sous un angle i en un point I situé au centre de la face d'entrée (AA'), le plan d'incidence coïncidence avec le plan xOz.

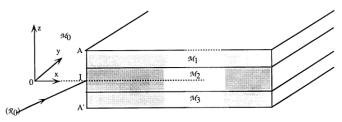


Fig. 2

- (a) À quelle condition portant sur l'angle i le rayon \mathcal{R}_0 se propagera-t-il dans le milieu \mathcal{M}_2 sans pénétrer dans les milieux \mathcal{M}_1 et \mathcal{M}_3 ? On définira un angle i critique, noté i_C dont on calculera la valeur.
- (**b**) On envoie une impulsion lumineuse de durée $\tau_0 = 1, 0 \cdot 10^{-10}$ s au point I portée par un faisceau de rayons d'incidences i comprises entre i = O et $i = i_c$. Déterminer la durée de l'impulsion lumineuse reçue à la sortie en x = D.
- 4. On suppose maintenant que le milieu M₂, de même épaisseur e₂ que précédemment, est constitué de M couches d'épaisseurs identiques e₂/M, M étant un nombre entier impair. Les indices décroissent d'une quantité Δn = 2 n₂-n₁/m₄₋₁ d'une couche à l'autre du milieu vers les bords. La figure 3 ci-dessous illustre le cas M = 5.

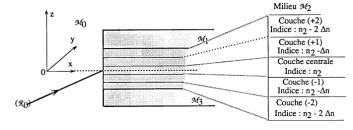


Fig. 3

(a) Exprimer l'indice de la couche de \mathcal{M}_2 en contact avec \mathcal{M}_1 ou \mathcal{M}_3 pour le cas général de M couches. Calculer cet indice pour M = 5.

- (**b**) Exprimer, dans le cas d'un milieu \mathcal{M}_2 à 5 couches, en fonction de n_0 , n_1 et n_2 l'angle d'incidence i_c .
- (c) Tracer l'allure, sur le même dessin, des trajets du rayon lumineux R₀ dans les cas suivants, en supposant que le nombre de couches est infini :
 - $i < i_{max}$;
 - $i > i_{\text{max}}$;
 - $i = i_{\text{max}}$.

Exercice 2 : Capture d'empreintes digitales

On présente une partie du dispositif utilisé par certains lecteurs d'empreintes digitales.

Le doigt est posé à plat sur l'hypoténuse d'un prisme droit isocèle taillé dans un verre d'indice optique noté n. L'image de l'empreinte digitale à travers un système optique est formée sur un capteur CCD puis numérisée. La figure 4 ci-dessous décrit le schéma de principe de ce dispositif.

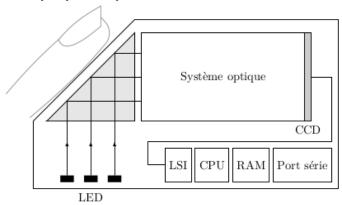


Fig. 4

En première approche, le système optique se résume à la traversée d'un dioptre (\mathcal{D}) et d'une lentille convergente (\mathcal{L}) (voir la figure 5). Si A est un point objet de l'empreinte digitale, alors on note A_1 l'image de A à travers le dioptre (\mathcal{D}) et A'_1 celle de A_1 à travers la lentille (\mathcal{L}) :

$$A \xrightarrow{(\mathscr{D})} A_1 \xrightarrow{(\mathscr{L})} A'_1.$$

On définit également les longueurs algébriques suivantes :

$$D_1 = \overline{A_1 A_1'}, \qquad D = \overline{A A_1'}, \qquad x = \overline{O A_1}, \qquad x' = \overline{O A_1'}$$

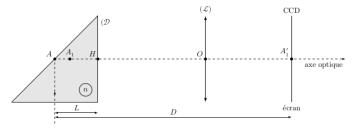


Fig. 5

- 1. L'objectif ici est de choisir la distance focale f' de la lentille et sa position, par exemple en déterminant p'. À cet effet, on donne n = 1,5, L = 3 cm, D = 10 cm et le grandissement transversal $\gamma = x'/x$ du système optique.
 - (a) Montrer que, dans les conditions de Gauss, la relation de conjugaison entre A et A_1 par le dioptre plan formé par la face de sortie du prisme s'écrit : $\overline{HA_1} = \frac{1}{n}\overline{HA}$.

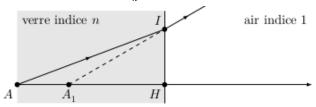


Fig. 6

- (**b**) Exprimer x et x' en fonction de D_1 et de γ . Déterminer alors f' en fonction de D_1 et de γ à l'aide de la formule de conjugaison de Descartes : $\frac{1}{x'} \frac{1}{x} = \frac{1}{f'}$.
- (c) On souhaite déterminer la condition portant sur la distance focale f' d'une lentille convergente si l'on veut former l'image réelle sur un écran situé à une distance D_1 d'un objet réel. En remarquant qu'il faut $\gamma < 0$ pour obtenir une image réelle d'un objet réel, montrer que le rapport D_1/f' est inférieurement borné. En déduire l'inégalité vérifiée par f'.
- (d) On suppose $\gamma = -2$. À quelle distance place-t-on la lentille devant l'écran et quelle est sa distance focale?
- (e) On souhaite avoir une image la plus agrandie possible ($|\gamma|$ maximal), mais sans augmenter l'encombrement du dispositif, ce qui impose de ne pas augmenter la longueur D_1 . Dans quel sens faut-il faire varier f'? En pratique, quelle limitation rencontre-t-on?
- **2.** Désormais, on fait abstraction du prisme, on considère que l'empreinte est positionnée en A_1 au lieu de A.

Une empreinte digitale est faite de sillons de profondeur moyenne $e=30\,\mu\mathrm{m}$ et dont deux crêtes voisines parallèles sont distantes de $a=100\,\mu\mathrm{m}$. On note l_c la largeur d'un pixel (considéré comme étant de forme carrée) du capteur CCD. On cherche à obtenir l'image des crêtes du sillon sur le capteur CCD : la lentille conjugue le plan des crêtes, où se situe A_1 , à l'écran CCD (voir la figure 7).

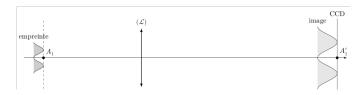


Fig. 7

Sur la figure 8, les points M_1 , M_2 et M_3 détaillent le motif de l'empreinte et leurs images respectives M_1' , M_2' et M_3' détaillent l'image de l'empreinte. On remarque que le point M_2' ne se forme pas tout à fait sur la surface du CCD, les rayons lumineux délimités par la monture de la lentille viennent former une petite tâche circulaire de diamètre φ .

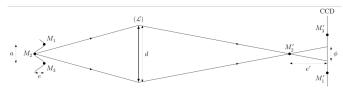


Fig. 8

On note p' la distance entre la lentille et la surface du CCD et p la distance entre la lentille et le plan formé par les points objets M_1 et M_3 . On note γ le grandissement entre les couples de points conjugués (M_1, M_1') et (M_3, M_3') . On a $\gamma = -2$.

- (a) À quelle condition sur a et sur l_c peut-on distinguer deux crêtes successives?
- (**b**) On note d le diamètre de la monture de la lentille (\mathcal{L}). Montrer que $\varphi = |\gamma d \frac{e}{p}|$, dans l'approximation $e \ll p$. En notant e' la distance de M'_2 à la surface du capteur CCD, on pourra montrer que $e' \approx \gamma^2 e$.
- (c) On voudrait que seules les crêtes soient nettes sur l'image et donc que les creux apparaissent flous. Pour cela, il faudrait que le diamètre φ de la tache excède la distance $M'_1M'_3$. Quelle inégalité doit alors vérifier le diamètre d de la monture? Montrer, en argumentant sur les ordres de grandeur, que c'est contraire au respect des conditions de Gauss.
- **3**. Un montage simple avec une lentille ne permet donc pas de capturer facilement les empreintes digitales de sorte que seules les crêtes apparaissent sur l'image. On reprend donc le dispositif complet, incluant le prisme.
 - (a) Expliquer succinctement mais rigoureusement le principe de la réflexion totale.
 - (b) Étant donné la position de l'empreinte digitale, si on s'en tient strictement à l'énoncé des lois de Descartes, peut-on éclairer le doigt, afin de former son image sur le capteur CCD? On rappelle que n = 1,5.
 Dans le montage proposé, la lentille permettra d'obtenir l'image du doigt sur l'écran du CCD. Néanmoins, il faut aborder l'optique ondulatoire pour comprendre comment le doigt est éclairé au travers du prisme.